Minggu, 18 Juni 2017

Koloid (Campuran 2 Fasa) dan Manfaatnya!



Pembuatan Koloid (Campuran 2 Fasa)

Pengertian koloid adalah campuran heterogen dari dua zat atau lebih di mana partikel-partikel zat berukuran antara 1 hingga 1000 nm terdispersi (tersebar) merata dalam medium zat lain. Zat yang terdispersi sebagai partikel disebut fase terdispersi, sedangkan zat yang menjadi medium mendispersikan partikel disebut medium pendispersi.
Secara makroskopis, koloid terlihat seperti larutan, di mana terbentuk campuran homogen dari zat terlarut dan pelarut. Namun, secara mikroskopis, terlihat seperti suspensi, yakni campuran heterogen di mana masing-masing komponen campuran cenderung saling memisah.
Warna pada cat berasal dari warna pigmen yang sebenarnya tidak larut dalam air ataupun medium pelarut lainnya. Namun demikian, cat terlihat seperti campuran yang homogen layaknya larutan garam dan bukan seperti campuran heterogen layaknya campuran pasir dengan air. Hal ini terjadi sebagaimana cat merupakan sistem koloid dengan pigmen terdispersi dalam air atau medium pelarut cat lainnya.
Jenis-jenis Koloid
Sistem koloid dapat dikelompokkan berdasarkan fase terdispersi dan fase pendispersinya. Berdasarkan fase terdispersi, jenis koloid ada tiga, antara lain sol (fase tersispersi padat), emulsi (fase terdispersi cair), dan buih (fase terdispersi gas). Koloid dengan fase pendispersi gas disebut aerosol.
Berdasarkan fase terdispersi dan pendispersinya, jenis koloid dapat dibagi menjadi 8 golongan seperti pada tabel berikut.
Fase Terdispersi
Fase Pendispersi
Jenis Koloid
Contoh Koloid
Cair
Gas
Aerosol
Kabut, awan, hair spray
Padat
Gas
Aerosol
Asa, debu di udara
Gas
Cair
Buih
Buih sabun, krim kocok
Cair
Cair
Emulsi
Susu, santan, mayonnaise
Padat
Cair
Sol
Sol emas, tinta, cat, pasta gigi
Gas
Padat
Buih padat
Karet busa, Styrofoam, batu apung
Cair
Padat
Emulsi padat (gel)
Margarin, keju, jelly, mutiara
Padat
Padat
Sol padat
Gelas berwarna, intan hitam
 
Sifat-sifat Koloid
1. Efek Tyndall
2. Gerak Brown
3. Muatan koloid
a. Adsorpsi
b. Elektroforesis
4. Koagulasi
1. Pembuatan Koloid Dengan Cara Kondensasi
2. Pembuatan Koloid Dengan Cara Dispersi
Untuk memperoleh air bersih perlu dilakukan upaya penjernihan air. Kadang-kadang air  dari mata air seperti sumur gali dan sumur bor tidak dapat dipakai sebagai air bersih jika tercemari. Air permukaan perlu dijernihkan sebelum dipakai. Upaya penjernihan air dapat dilakukan baik skala kecil (rumah tangga) maupun skala besar seperti yang dilakukan oleh Perusahaan Daerah Air Minum (PDAM). Pada dasarnya penjernihan air itu dilakukan  secara bertahap. Mula-mula mengendapkan atau menyaring bahan-bahan yang tidak larut dengan saringan pasir. Kemudian air yang telah disaring ditambah zat kimia, misalnya tawas atau aluminium sulfat dan kapur agar kotoran menggumpal dan selanjutnya mengendap, dan kaporit atau kapur klor untuk membasmi bibit-bibit penyakit. Air yang  dihasilkan dari penjernihan itu, apabila akan dipakai sebagai air minum, harus dimasak  terlebih dahulu sampai mendidih beberapa saat lamanya. Proses pengolahan air tergantung pada mutu baku air (air belum diolah), namun pada  dasarnya melalui 4 tahap pengolahan. Tahap pertama adalah pengendapan, yaitu air baku dialirkan perlahan-lahan sampai benda-benda yang tak larut mengendap. Pengendapan ini  memerlukan tempat yang luas dan waktu yang lama. Benda-benda yang berupa koloid  tidak dapat diendapkan dengan cara itu. Pada  tahap kedua, setelah suspense kasar terendapkan, air yang mengandung koloid diberi zat yang dinamakan koagulan. Koagulan yang banyak digunakan adalah aluminium sulfat, besi(II)sulfat, besi(III)klorida, dan klorinasi koperos (FeCl2Fe2(SO4)3). Pemberian koagulan selain untuk mengendapkan partikel-partikel koloid, juga untuk menjadikan  pH air sekitar 7 (netral). Jika pH air berkisar antara 5,5–6,8, maka yang digunakan adalah aluminium sulfat, sedangkan untuk senyawa besi sulfat dapat digunakan pada pH air 3,5–5,5. Pada  tahap ketiga, air yang telah diberi koagulan mengalami proses pengendapan, benda-benda koloid yang telah menggumpal dibiarkan mengendap. Setelah mengalami pengendapan, air tersebut disaring melalui penyaring pasir sehingga sisa endapan yang masih terbawa di dalam air akan tertahan pada saringan pasir tersebut. Pada  tahap terakhir, air jernih yang dihasilkan diberi sedikit air kapur untuk menaikkan pHnya, dan untuk membunuh bakteri diberikan kalsium hipoklorit (kaporit) atau klorin (Cl2).

Ketika seberkas cahaya diarahkan kepada larutan, cahaya akan diteruskan. Namun, ketika berkas cahaya diarahkan kepada sistem koloid, cahaya akan dihamburkan. Efek penghamburan cahaya oleh partikel koloid ini disebut efek Tyndall. Efek Tyndall dapat digunakan untuk membedakan sistem koloid dari larutan. Penghamburan cahaya ini terjadi karena ukuran partikel koloid hampir sama dengan panjang gelombang cahaya tampak (400 – 750 nm).
Secara mikroskopis, partikel-partikel koloid bergerak secara acak dengan jalur patah-patah (zig-zag) dalam medium pendispersi. Gerakan ini disebabkan oleh terjadinya tumbukan antara partikel koloid dengan medium pendispersi. Gerakan acak partikel ini disebut gerak Brown. Gerak Brown membantu menstabilkan partikel koloid sehingga tidak terjadi pemisahan antara partikel terdispersi dan medium pendispersi oleh pengaruh gaya gravitasi.
Partikel koloid dapat menyerap partikel-partikel lain yang bermuatan maupun tidak bermuatan pada bagian permukaannya. Peristiwa penyerapan partikel-partikel pada permukaan zat ini disebut adsorpsi. Partikel koloid dapat mengadsorpsi ion-ion dari medium pendispersinya sehingga partikel tersebut menjadi bermuatan listrik. Jenis muatannya bergantung pada muatan ion-ion yang diserap. Sebagai contoh, sol Fe(OH)3 dalam air bermuatan positif karena mengadsorpsi ion-ion positif, sedangkan sol As2S3 bermuatan negatif karena mengadsorpsi ion-ion negatif.
Partikel koloid dapat bergerak dalam medan listrik. Hal ini menunjukkan bahwa partikel koloid bermuatan listrik. Pergerakan partikel koloid dalam medan listrik di mana partikel bermuatan bergerak ke arah elektrode dengan muatan berlawanan ini disebut elektroforesis. Koloid bermuatan positif akan bergerak ke arah elektrode negatif, sedangkan koloid bermuatan negatif akan bergerak ke arah elektrode positif. Oleh karena itu, elektroforesis dapat digunakan untuk menentukan jenis muatan koloid dan juga untuk memisahkan partikel-partikel koloid berdasarkan ukuran partikel dan muatannya.
Muatan listrik sejenis dari partikel-partikel koloid membantu menstabilkan sistem koloid. Jika muatan listrik tersebut hilang, partikel-partikel koloid akan menjadi tidak stabil dan bergabung membentuk gumpalan. Proses pembentukan gumpalan-gumpalan partikel ini disebut koagulasi. Setelah gumpalan-gumpalan ini menjadi cukup besar, gumpalan ini akhirnya akan mengendap akibat pengaruh gravitasi.  Koagulasi dapat dilakukan dengan empat cara, yaitu:
1.      mekanik, yakni dengan pengadukan, pemanasan atau pendinginan;
2.      menggunakan prinsip elektroforesis, di mana partikel-partikel koloid bermuatan negatif akan digumpalkan di elektrode positif dan partikel-partikel koloid bermuatan positif akan digumpalkan di elektrode negatif jika dialirkan arus listrik cukup lama;
3.      menambahkan elektrolit, di mana ion positif dari elektrolit akan ditarik partikel koloid bermuatan negatif dan ion negatif dari elektrolit akan ditarik partikel koloid bermuatan positif sehingga partikel-partikel koloid dikelilingi oleh lapisan kedua yang memiliki muatan berlawanan dengan lapisan pertama. Apabila jarak antara kedua lapisan tersebut cukup dekat, muatan partikel koloid akan menjadi netral sehingga terjadilah koagulasi. Semakin besar muatan ion dari elektrolit, proses koagulasi semakin cepat dan efektif;
4.      menambahkan koloid lain dengan muatan berlawanan, di mana kedua sistem koloid dengan muatan berlawanan akan saling tarik-menarik dan saling mengadsorpsi sehingga terjadi koagulasi.
Koagulasi dapat dicegah dengan penambahan koloid pelindung, yakni suatu koloid yang berfungsi menstabilkan partikel koloid yang terdispersi dengan membungkus partikel tersebut sehingga tidak dapat saling bergabung membentuk gumpalan.
Pada cara ini, partikel-partikel kecil (partikel larutan) bergabung menjadi partikel-partikel yang lebih besar (partikel koloid), yang dapat dilakukan melalui:
 Reaksi redoks Contoh: pembuatan sol belerang
2H2S(g) + SO2(aq) → 3S(koloid) + 2H2O(l)

Hidrolisis Contoh: pembuatan sol Fe(OH)3 dengan menambahkan larutan FeCl3 ke dalam air mendidih
FeCl3(aq) + 3H2O(l) → Fe(OH)3(koloid) + 3HCl(aq)

 Dekomposisi rangkap Contoh: pembuatan sol AgCl
AgNO3(aq) + HCl(aq) → AgCl(koloid) + HNO3(aq)

 Penggantian pelarut Contoh: bila larutan jenuh kalsium asetat dicampur dengan alkohol akan terbentuk suatu koloid berupa gel
Pada cara ini, partikel-partikel besar (partikel suspensi) dipecah menjadi partikel-partikel yang lebih kecil (partikel koloid), yang dapat dilakukan melalui
Cara mekanik
Pada cara ini, butiran-butiran kasar digerus ataupun digiling dengan penggiling koloid hingga tingkat kehalusan tertentu lalu diaduk dalam medium pendispersi. Contoh: sol belerang dapat dibuat dengan menggerus serbuk belerang bersama-sama dengan gula pasir, kemudian serbuk yang sudah halus tersebut dicampur dengan air.
Cara peptisasi
Pada cara ini, partikel-partikel besar dipecah dengan bantuan zat pemeptisasi (pemecah). Contoh: endapan Al(OH)3 dipeptisasi oleh AlCl3; endapan NiS oleh H2S; dan agar-agar dipeptisasi oleh air.
Cara busur Bredig
Cara ini digunakan untuk membuat sol-sol logam seperti Ag, Au, dan Pt. Logam yang akan dijadikan koloid digunakan sebagai elektrode yang dicelupkan dalam medium pendispersi lalu kedua ujung elektroda diberi loncatan listrik.
3. Koloid dan aplikasinya sehari-hari
a.      Mengurangi polusi udara
Gas buangan pabrik yang mengandung asap dan partikel berbahaya dapat diatasi dengan menggunakan alat yang disebut pengendap cottrel. Prinsip kerja alat ini memanfaatkan sifat muatan dan penggumpalan koloid sehingga gas yang dikeluarkan ke udara telah bebas dari asap dan partikel berbahaya. Asap dari pabrik sebelum meninggalkan cerobong asap dialirkan melalui ujung-ujung logam yang tajam dan bermuatan pada tegangan tinggi (20.000 sampai 75.000 volt).  Ujung-ujung yang runcing akan mengionkan molekul molekul dalam udara. Ion-ion tersebut akan diadsorpsi oleh partikel asap dan menjadi bermuatan. Selanjutnya, partikel  bermuatan itu akan tertarik dan diikat pada electrode yang lainnya. Pengendap Cottrel ini banyak digunakan dalam industri untuk dua tujuan, yaitu mencegah polusi udara oleh buangan beracun dan memperoleh kembali debu yang berharga (misalnya debu logam).
b.      Penggumpalan lateks
Getah karet dihasilkan dari pohon karet atau hevea. Getah karet merupakan sol, yaitu dispersi koloid fase padat dalam cairan. Karet alam merupakan zat padat yang molekulnya sangat besar (polimer). Partikel karet alam terdispersi sebagai partikel koloid dalam sol  getah karet. Untuk mendapatkan karetnya, getah karet harus dikoagulasikan agar karet menggumpal dan terpisah dari medium pendispersinya. Untuk mengkoagulasikan getah  karet, biasanya digunakan asam formiat; HCOOH atau asam asetat; CH3COOH. Larutan asam pekat itu akan merusak lapisan pelindung yang mengelilingi partikel karet. Sedangkan ion-ion H+-nya akan menetralkan muatan partikel karet sehingga karet akan menggumpal. Selanjutnya, gumpalan karet digiling dan dicuci lalu diproses lebih lanjut sebagai lembaran yang disebut sheet atau diolah menjadi karet remah (crumb rubber). Untuk keperluan lain,  misalnya pembuatan balon dan karet busa, getah karet tidak digumpalkan melainkan dibiarkan dalam wujud cair yang disebut lateks. Untuk menjaga kestabilan sol lateks, getah karet dicampur dengan larutan amonia; NH3. Larutan ammonia yang bersifat basa melindungi partikel karet di dalam sol lateks dari zat-zat yang bersifat asam sehingga sol tidak menggumpal.
c.       Membantu pasien gagal ginjal
Proses dialisis untuk memisahkan partikel-partikel koloid dan zat terlarut merupakan dasar bagi pengembangan dialisator. Penerapan dalam kesehatan adalah sebagai mesin pencuci darah untuk penderita gagal ginjal. Ion-ion dan molekul kecil dapat melewati selaput semipermiabel dengan demikian pada akhir proses pada kantung hanya tersisa  koloid saja. Dengan melakukan cuci darah yang memanfaatkan prinsip dialisis koloid, senyawa beracun seperti urea dan keratin dalam darah penderita gagal ginjal dapat dikeluarkan. Darah yang telah bersih kemudian dimasukkan kembali ke tubuh pasien.
d.      Penjernihan air
e.       Sebagai deodorant
Deodoran mengandung aluminium klorida yang dapat mengkoagulasi atau mengendapkan protein dalam keringat.endapan protein ini dapat menghalangi kerja kelenjer keringat sehingga keringat dan potein yang dihasilkan berkurang.
f.       Sebagai bahan makanan dan obat
Ada zat-zat yang tidak larut dalam air sehingga harus dikemas dalam bentuk koloid sehingga mudah diminum. Contohnya obat dalam bentuk kapsul.
g.      Sebagai bahan kosmetik
Ada berbagai bahan kosmetik kosmetik berupa padatan, tetapi lebih baik digunakan dalam bentuk cairan. Untuk itu biasanya dibuat berupa koloid dengan tertentu.
h.      Sebagai bahan pencuci
Prinsip koloid juga digunakan dalam proses pencucian dengan sabun dan detergen. Dalam pencucian dengan sabun atau detergen, sabun/ detergen berfungsi sebagai emulgator. Sabun/detergen akan mengemulsikan minyak dalam air  sehingga kotoran-kotoran berupa lemak atau minyak dapat dihilangkan dengan cara pembilasan dengan air

Fahmi Eksa Sagita (12630027)

Tidak ada komentar:

Posting Komentar